Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of 200,000 samples.
Publications
2023
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine-conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet-induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.
BACKGROUND: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism.
METHODS: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography mass-spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins.
RESULTS: CSF tryptophan was associated with 60-day mortality from tuberculous meningitis (HR=1.16, 95%CI=1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and HIV-positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95%CI=1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis.
CONCLUSION: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of mortality. These findings may reveal new targets for host-directed therapy.
FUNDING: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
BACKGROUND AND AIM: Plasma citric acid cycle (CAC) metabolites might be likely related to cardiovascular disease (CVD). However, studies assessing the longitudinal associations between circulating CAC-related metabolites and CVD risk are lacking. The aim of this study was to evaluate the association of baseline and 1-year levels of plasma CAC-related metabolites with CVD incidence (a composite of myocardial infarction, stroke or cardiovascular death), and their interaction with Mediterranean diet interventions.
METHODS AND RESULTS: Case-cohort study from the PREDIMED trial involving participants aged 55-80 years at high cardiovascular risk, allocated to MedDiets or control diet. A subcohort of 791 participants was selected at baseline, and a total of 231 cases were identified after a median follow-up of 4.8 years. Nine plasma CAC-related metabolites (pyruvate, lactate, citrate, aconitate, isocitrate, 2-hydroxyglutarate, fumarate, malate and succinate) were measured using liquid chromatography-tandem mass spectrometry. Weighted Cox multiple regression was used to calculate hazard ratios (HRs). Baseline fasting plasma levels of 3 metabolites were associated with higher CVD risk, with HRs (for each standard deviation, 1-SD) of 1.46 (95%CI:1.20-1.78) for 2-hydroxyglutarate, 1.33 (95%CI:1.12-1.58) for fumarate and 1.47 (95%CI:1.21-1.78) for malate (p of linear trend <0.001 for all). A higher risk of CVD was also found for a 1-SD increment of a combined score of these 3 metabolites (HR = 1.60; 95%CI: 1.32-1.94, p trend <0.001). This result was replicated using plasma measurements after one-year. No interactions were detected with the nutritional intervention.
CONCLUSION: Plasma 2-hydroxyglutarate, fumarate and malate levels were prospectively associated with increased cardiovascular risk.
CLINICAL TRIAL NUMBER: ISRCTN35739639.
UNLABELLED: High-throughput proteomics allows researchers to simultaneously explore the roles of thousands of biomarkers in the pathophysiology of diabetes. We conducted proteomic association studies of incident type 2 diabetes and physiologic responses to an intravenous glucose tolerance test (IVGTT) to identify novel protein contributors to glucose homeostasis and diabetes risk. We tested 4,776 SomaScan proteins measured in relation to 18-year incident diabetes risk in participants from the Cardiovascular Health Study (N = 2,631) and IVGTT-derived measures in participants from the HERITAGE Family Study (N = 752). We characterize 51 proteins that were associated with longitudinal diabetes risk, using their respective 39, 9, and 8 concurrent associations with insulin sensitivity index (SI), acute insulin response to glucose (AIRG), and glucose effectiveness (SG). Twelve of the 51 diabetes associations appear to be novel, including β-glucuronidase, which was associated with increased diabetes risk and lower SG, suggesting an alternative pathway to insulin for glucose disposal; and plexin-B2, which also was associated with increased diabetes risk, but with lower AIRG, and not with SI, indicating a mechanism related instead to pancreatic dysfunction. Other novel protein associations included alcohol dehydrogenase-1C, fructose-bisphosphate aldolase-B, sorbitol dehydrogenase with elevated type 2 diabetes risk, and a leucine-rich repeat containing protein-15 and myocilin with decreased risk.
ARTICLE HIGHLIGHTS: Plasma proteins are associated with the risk of incident diabetes in older adults independent of various demographic, lifestyle, and biochemical risk factors. These same proteins are associated with subtle differences in measures of glucose homeostasis earlier in life. Proteins that are associated with lower insulin sensitivity in individuals without diabetes tend to be associated with appropriate compensatory mechanisms, such as a stronger acute insulin response or higher glucose effectiveness. Proteins that are associated with future diabetes risk, but not with insulin insensitivity, tend to be associated with lower glucose effectiveness and/or impaired acute insulin response.
Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.
Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of 200,000 samples.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine-conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet-induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.
BACKGROUND: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism.
METHODS: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography mass-spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins.
RESULTS: CSF tryptophan was associated with 60-day mortality from tuberculous meningitis (HR=1.16, 95%CI=1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and HIV-positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95%CI=1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis.
CONCLUSION: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of mortality. These findings may reveal new targets for host-directed therapy.
FUNDING: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
UNLABELLED: High-throughput proteomics allows researchers to simultaneously explore the roles of thousands of biomarkers in the pathophysiology of diabetes. We conducted proteomic association studies of incident type 2 diabetes and physiologic responses to an intravenous glucose tolerance test (IVGTT) to identify novel protein contributors to glucose homeostasis and diabetes risk. We tested 4,776 SomaScan proteins measured in relation to 18-year incident diabetes risk in participants from the Cardiovascular Health Study (N = 2,631) and IVGTT-derived measures in participants from the HERITAGE Family Study (N = 752). We characterize 51 proteins that were associated with longitudinal diabetes risk, using their respective 39, 9, and 8 concurrent associations with insulin sensitivity index (SI), acute insulin response to glucose (AIRG), and glucose effectiveness (SG). Twelve of the 51 diabetes associations appear to be novel, including β-glucuronidase, which was associated with increased diabetes risk and lower SG, suggesting an alternative pathway to insulin for glucose disposal; and plexin-B2, which also was associated with increased diabetes risk, but with lower AIRG, and not with SI, indicating a mechanism related instead to pancreatic dysfunction. Other novel protein associations included alcohol dehydrogenase-1C, fructose-bisphosphate aldolase-B, sorbitol dehydrogenase with elevated type 2 diabetes risk, and a leucine-rich repeat containing protein-15 and myocilin with decreased risk.
ARTICLE HIGHLIGHTS: Plasma proteins are associated with the risk of incident diabetes in older adults independent of various demographic, lifestyle, and biochemical risk factors. These same proteins are associated with subtle differences in measures of glucose homeostasis earlier in life. Proteins that are associated with lower insulin sensitivity in individuals without diabetes tend to be associated with appropriate compensatory mechanisms, such as a stronger acute insulin response or higher glucose effectiveness. Proteins that are associated with future diabetes risk, but not with insulin insensitivity, tend to be associated with lower glucose effectiveness and/or impaired acute insulin response.