Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.
Publications
2023
Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.
Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both directions. At epigenetic, transcriptomic, and metabolomic levels, we find that the biological age of young mice is increased by heterochronic parabiosis and restored following surgical detachment. We also identify transient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or mice. Together, these data show that biological age undergoes a rapid increase in response to diverse forms of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics that should be considered in future studies. The elevation of biological age by stress may be a quantifiable and actionable target for future interventions.
BACKGROUND: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism.
METHODS: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography-mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins.
RESULTS: CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis.
CONCLUSIONS: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy.
FUNDING: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma is the most common form, and yet the etiology of this multifactorial disease is poorly understood. We aimed to identify plasma metabolites associated with the risk of developing POAG in a case-control study (599 cases and 599 matched controls) nested within the Nurses' Health Studies, and Health Professionals' Follow-Up Study. Plasma metabolites were measured with LC-MS/MS at the Broad Institute (Cambridge, MA, USA); 369 metabolites from 18 metabolite classes passed quality control analyses. For comparison, in a cross-sectional study in the UK Biobank, 168 metabolites were measured in plasma samples from 2,238 prevalent glaucoma cases and 44,723 controls using NMR spectroscopy (Nightingale, Finland; version 2020). Here we show higher levels of diglycerides and triglycerides are adversely associated with glaucoma in all four cohorts, suggesting that they play an important role in glaucoma pathogenesis.
OBJECTIVE: The perturbation of tryptophan (TRP) metabolism has been linked with HIV infection and cardiovascular disease (CVD), but the interrelationship among TRP metabolites, gut microbiota, and atherosclerosis remain unclear in the context of HIV infection.
METHODS: We included 361 women (241 HIV+, 120 HIV-) with carotid artery plaque assessments from the Women's Interagency HIV Study, measured ten plasma TRP metabolites and profiled fecal gut microbiome. TRP metabolites-related gut bacteria were selected through the Analysis of Compositions of Microbiomes with Bias Correction method. Associations of TRP metabolites and related microbial features with plaque were examined using multivariable logistic regression.
RESULTS: While plasma kynurenic acid (KYNA) (odds ratio [OR] = 1.93, 95% confidence interval [CI]:1.12, 3.32 per one SD increase; P = 0.02) and KYNA/TRP (OR = 1.83 [95%CI:1.08, 3.09], P = 0.02) were positively associated with plaque, indole-3-propionate (IPA) (OR = 0.62 [95%CI:0.40, 0.98], P = 0.03) and IPA/KYNA (OR = 0.51[95%CI:0.33, 0.80], P < 0.01) were inversely associated with plaque. Five gut bacterial genera and many affiliated species were positively associated with IPA (FDR-q < 0.25), including Roseburia sp., Eubacterium sp., Lachnospira sp., and Coprobacter sp.; but no bacterial genera were found to be associated with KYNA. Furthermore, an IPA-associated-bacteria score was inversely associated with plaque (OR = 0.47[95%CI:0.28, 0.79], P < 0.01). But no significant effect modification by HIV serostatus was observed in these associations.
CONCLUSIONS: In a cohort of women living with and without HIV infection, plasma IPA levels and related gut bacteria were inversely associated with carotid artery plaque, suggesting a potential beneficial role of IPA and its gut bacterial producers in atherosclerosis and CVD.
Circulating metabolite levels may reflect the state of the human organism in health and disease, however, the genetic architecture of metabolites is not fully understood. We have performed a whole-genome sequencing association analysis of both common and rare variants in up to 11,840 multi-ethnic participants from five studies with up to 1666 circulating metabolites. We have discovered 1985 novel variant-metabolite associations, and validated 761 locus-metabolite associations reported previously. Seventy-nine novel variant-metabolite associations have been replicated, including three genetic loci located on the X chromosome that have demonstrated its involvement in metabolic regulation. Gene-based analysis have provided further support for seven metabolite-replicated loci pairs and their biologically plausible genes. Among those novel replicated variant-metabolite pairs, follow-up analyses have revealed that 26 metabolites have colocalized with 21 tissues, seven metabolite-disease outcome associations have been putatively causal, and 7 metabolites might be regulated by plasma protein levels. Our results have depicted the genetic contribution to circulating metabolite levels, providing additional insights into understanding human disease.
UNLABELLED: Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR-Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity.
SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR-Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749.
BACKGROUND: Alterations in gut microbiota have been implicated in HIV infection and cardiovascular disease. However, how gut microbial alterations relate to host inflammation and metabolite profiles, and their relationships with atherosclerosis, have not been well-studied, especially in the context of HIV infection. Here, we examined associations of gut microbial species and functional components measured by shotgun metagenomics with carotid artery plaque assessed by B-mode carotid artery ultrasound in 320 women with or at high risk of HIV (65% HIV +) from the Women's Interagency HIV Study. We further integrated plaque-associated microbial features with serum proteomics (74 inflammatory markers measured by the proximity extension assay) and plasma metabolomics (378 metabolites measured by liquid chromatography tandem mass spectrometry) in relation to carotid artery plaque in up to 433 women.
RESULTS: Fusobacterium nucleatum, a potentially pathogenic bacteria, was positively associated with carotid artery plaque, while five microbial species (Roseburia hominis, Roseburia inulinivorans, Johnsonella ignava, Odoribacter splanchnicus, Clostridium saccharolyticum) were inversely associated with plaque. Results were consistent between women with and without HIV. Fusobacterium nucleatum was positively associated with several serum proteomic inflammatory markers (e.g., CXCL9), and the other plaque-related species were inversely associated with proteomic inflammatory markers (e.g., CX3CL1). These microbial-associated proteomic inflammatory markers were also positively associated with plaque. Associations between bacterial species (especially Fusobacterium nucleatum) and plaque were attenuated after further adjustment for proteomic inflammatory markers. Plaque-associated species were correlated with several plasma metabolites, including the microbial metabolite imidazole-propionate (ImP), which was positively associated with plaque and several pro-inflammatory markers. Further analysis identified additional bacterial species and bacterial hutH gene (encoding enzyme histidine ammonia-lyase in ImP production) associated with plasma ImP levels. A gut microbiota score based on these ImP-associated species was positively associated with plaque and several pro-inflammatory markers.
CONCLUSION: Among women living with or at risk of HIV, we identified several gut bacterial species and a microbial metabolite ImP associated with carotid artery atherosclerosis, which might be related to host immune activation and inflammation. Video Abstract.
The inflammatory and insulinemic potentials of diets have been associated with colorectal cancer risk. However, it is unknown whether the plasma metabolite profiles related to inflammatory diets, or to insulinemic diets, underlie this association. The aim of this study was to evaluate the association between metabolomic profile scores related to the food-based empirical dietary inflammatory patterns (EDIP), the empirical dietary index for hyperinsulinemia (EDIH), and plasma inflammation (CRP, IL-6, TNFα-R2, adiponectin) and insulin (C-peptide) biomarkers, and colorectal cancer risk. Elastic net regression was used to derive three metabolomic profile scores for each dietary pattern among 6840 participants from the Nurses' Health Study and Health Professionals Follow-up Study, and associations with CRC risk were examined using multivariable-adjusted logistic regression, in a case-control study of 524 matched pairs nested in both cohorts. Among 186 known metabolites, 27 were significantly associated with both the EDIP and inflammatory biomarkers, and 21 were significantly associated with both the EDIH and C-peptide. In men, odds ratios (ORs) of colorectal cancer, per 1 standard deviation (SD) increment in metabolomic score, were 1.91 (1.31-2.78) for the common EDIP and inflammatory-biomarker metabolome, 1.12 (0.78-1.60) for EDIP-only metabolome, and 1.65 (1.16-2.36) for the inflammatory-biomarkers-only metabolome. However, no association was found for EDIH-only, C-peptide-only, and the common metabolomic signatures in men. Moreover, the metabolomic signatures were not associated with colorectal cancer risk among women. Metabolomic profiles reflecting pro-inflammatory diets and inflammation biomarkers were associated with colorectal cancer risk in men, while no association was found in women. Larger studies are needed to confirm our findings.