The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.
Publications
2024
Angiopoietin-like 3 (ANGPTL3) is a key regulator of lipoprotein metabolism, known for its potent inhibition on intravascular lipoprotein and endothelial lipase activities. Recent studies have shed light on the cellular functions of ANGPTL3. However, the precise mechanism underlying its regulation of cellular lipid metabolism remains elusive. We recently reported that ANGPTL3 interacts with the chromatin regulator SMARCAL1, which plays a pivotal role in maintaining cellular lipid homeostasis. Here, through a combination of in vitro and in vivo functional analyses, we provide evidence that ANGPTL3 indeed influences cellular lipid metabolism. Increased expression of Angptl3 prompted the formation of lipid droplets (LDs) in response to slow growth conditions. Notably, under the conditions, Angptl3 accumulated within cytoplasmic peroxisomes, where it interacts with SmarcAL1, which translocated from nucleus as observed previously. This translocation induced changes in gene expression favoring triglyceride (TG) accumulation. Indeed, ANGPTL3 gene knockout (KO) in human cells increased the expression of key lipid genes, which could be linked to elevated nuclear localization of SMARCAL1, whereas the expression of these genes decreased in SMARCAL1 KO cells. Consistent with these findings, the injection of Angptl3 protein to mice led to hepatic fat accumulation derived from circulating blood, a phenotype likely indicative of its long-term effect on blood TG, linked to SmarcAL1 activities. Thus, our results suggest that the Angptl3-SmarcAL1 pathway may confer the capacity for TG storage in cells in response to varying growth states, which may have broad implications for this pathway in regulating energy storage and trafficking.
The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.
IMPORTANCE: Blood pressure response during acute exercise (exercise blood pressure [EBP]) is associated with the future risk of hypertension and cardiovascular disease (CVD). Biochemical characterization of EBP could inform disease biology and identify novel biomarkers of future hypertension.
OBJECTIVE: To identify protein markers associated with EBP and test their association with incident hypertension.
DESIGN, SETTING, AND PARTICIPANTS: This study assayed 4977 plasma proteins in 681 healthy participants (from 763 assessed) of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE; data collection from January 1993 to December 1997 and plasma proteomics from January 2019 to January 2020) Family Study at rest who underwent 2 cardiopulmonary exercise tests. Individuals were free of CVD at the time of recruitment. Individuals with resting SBP ≥160 mm Hg or DBP ≥100 mm Hg or taking antihypertensive drug therapy were excluded from the study. The association between resting plasma protein levels to both resting BP and EBP was evaluated. Proteins associated with EBP were analyzed for their association with incident hypertension in the Framingham Heart Study (FHS; n = 1177) and validated in the Jackson Heart Study (JHS; n = 772) and Multi-Ethnic Study of Atherosclerosis (MESA; n = 1367). Proteins associated with incident hypertension were tested for putative causal links in approximately 700 000 individuals using cis-protein quantitative loci mendelian randomization (cis-MR). Data were analyzed from January 2023 to January 2024.
EXPOSURES: Plasma proteins.
MAIN OUTCOMES AND MEASURES: EBP was defined as the BP response during a fixed workload (50 W) on a cycle ergometer. Hypertension was defined as BP ≥140/90 mm Hg or taking antihypertensive medication.
RESULTS: Among the 681 participants in the HERITAGE Family Study, the mean (SD) age was 34 (13) years; 366 participants (54%) were female; 238 (35%) were self-reported Black and 443 (65%) were self-reported White. Proteomic profiling of EBP revealed 34 proteins that would not have otherwise been identified through profiling of resting BP alone. Transforming growth factor β receptor 3 (TGFBR3) and prostaglandin D2 synthase (PTGDS) had the strongest association with exercise systolic BP (SBP) and diastolic BP (DBP), respectively (TGFBR3: exercise SBP, β estimate, -3.39; 95% CI, -4.79 to -2.00; P = 2.33 × 10-6; PTGDS: exercise DBP β estimate, -2.50; 95% CI, -3.29 to -1.70; P = 1.18 × 10-9). In fully adjusted models, TGFBR3 was inversely associated with incident hypertension in FHS, JHS, and MESA (hazard ratio [HR]: FHS, 0.86; 95% CI, 0.75-0.97; P = .01; JHS, 0.87; 95% CI, 0.77-0.97; P = .02; MESA, 0.84; 95% CI, 0.71-0.98; P = .03; pooled cohort, 0.86; 95% CI, 0.79-0.92; P = 6 × 10-5). Using cis-MR, genetically predicted levels of TGFBR3 were associated with SBP, hypertension, and CVD events (SBP: β, -0.38; 95% CI, -0.64 to -0.11; P = .006; hypertension: odds ratio [OR], 0.99; 95% CI, 0.98-0.99; P < .001; heart failure with hypertension: OR, 0.86; 95% CI, 0.77-0.97; P = .01; CVD: OR, 0.84; 95% CI, 0.77-0.92; P = 8 × 10-5; cerebrovascular events: OR, 0.77; 95% CI, 0.70-0.85; P = 5 × 10-7).
CONCLUSIONS AND RELEVANCE: Plasma proteomic profiling of EBP identified a novel protein, TGFBR3, which may protect against elevated BP and long-term CVD outcomes.
BACKGROUND AND OBJECTIVE: Blood-based small molecule metabolites offer easy accessibility and hold significant potential for insights into health processes, the impact of lifestyle, and genetic variation on disease, enabling precise risk prevention. In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline.
METHODS: We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites.
RESULTS: We identified metabolites associated with higher and lower risk of HF incidence, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. These associations were not confounded by the other metabolites due to uncovering the connectivity among metabolites and adjusting each association for the confounding metabolites. Examples of our findings include the direct influence of asparagine on glycine, both of which were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids, which are not synthesized in the human body and are obtained directly from the diet.
CONCLUSION: Metabolites may play a critical role in linking genetic background and lifestyle factors to HF incidence. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates studying complex conditions like HF.
Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.
BACKGROUND: Posttraumatic stress disorder (PTSD) is characterized by severe distress and associated with cardiometabolic diseases. Studies in military and clinical populations suggest dysregulated metabolomic processes may be a key mechanism. Prior work identified and validated a metabolite-based distress score (MDS) linked with depression and anxiety and subsequent cardiometabolic diseases. Here, we assessed whether PTSD shares metabolic alterations with depression and anxiety and also if additional metabolites are related to PTSD.
METHODS: We leveraged plasma metabolomics data from three subsamples nested within the Nurses' Health Study II, including 2835 women with 2950 blood samples collected across three timepoints (1996-2014) and 339 known metabolites consistently assayed by mass spectrometrybased techniques. Trauma and PTSD exposures were assessed in 2008 and characterized as follows: lifetime trauma without PTSD, lifetime PTSD in remission, and persistent PTSD symptoms. Associations between the exposures and the MDS or individual metabolites were estimated within each subsample adjusting for potential confounders and combined in random-effects meta-analyses.
RESULTS: Persistent PTSD symptoms were associated with higher levels of the previously developed MDS for depression and anxiety. Out of 339 metabolites, we identified nine metabolites (primarily elevated glycerophospholipids) associated with persistent symptoms (false discovery rate<0.05). No metabolite associations were found with the other PTSD-related exposures.
CONCLUSIONS: As the first large-scale, population-based metabolomics analysis of PTSD, our study highlighted shared and distinct metabolic differences linked to PTSD versus depression or anxiety. We identified novel metabolite markers associated with PTSD symptom persistence, suggesting further connections with metabolic dysregulation that may have downstream consequences for health.
Venous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. Previous studies have shown that the accumulation of platelets and neutrophils at sites of endothelial cell activation is a primary event in VT, but a role for platelet αIIbβ3 in the initiation of venous thrombosis has not been established. This task has been complicated by the increased bleeding linked to partial agonism of current αIIbβ3 inhibitory drugs such as tirofiban (Aggrastat ® ). Here, we show that m-tirofiban, an engineered version of tirofiban, is not a partial agonist of αIIbβ3. This is based on its cryo-EM structure in complex with human full-length αIIbβ3 and its inability to increase expression of an activation-sensitive epitope on platelet αIIbβ3. m-tirofiban abolished agonist-induced platelet aggregation ex vivo at concentrations that preserved clot retraction and markedly suppressed the accumulation of platelets, neutrophils, and fibrin on thrombin-activated endothelium in real-time using intravital microscopy in a mouse model of venous thrombogenesis. Unlike tirofiban, however, m-tirofiban did not increase bleeding at the thrombosis-inhibitory dose. These findings establish a key role for αIIbβ3 in the initiation of VT, provide a guiding principle for designing potentially safer inhibitors for other integrins, and suggest that pure antagonists of αIIbβ3 like m-tirofiban merit further consideration as potential thromboprophylaxis agents in patients at high-risk for VT and hemorrhage.
BACKGROUND: Low physical performance is associated with higher mortality rate in multiple pathological conditions. Here, we aimed to determine whether body composition and physical performance could be prognostic factors in non-small cell lung cancer (NSCLC) patients. Moreover, we performed an exploratory approach to determine whether plasma samples from NSCLC patients could directly affect metabolic and structural phenotypes in primary muscle cells.
METHODS: This prospective cohort study included 55 metastatic NSCLC patients and seven age-matched control subjects. Assessments included physical performance, body composition, quality of life and overall survival rate. Plasma samples from a sub cohort of 18 patients were collected for exploratory studies in cell culture and metabolomic analysis.
RESULTS: We observed a higher survival rate in NSCLC patients with high performance in the timed up-and-go (+320%; p = .007), sit-to-stand (+256%; p = .01) and six-minute walking (+323%; p = .002) tests when compared to NSCLC patients with low physical performance. There was no significant association for similar analysis with body composition measurements (p > .05). Primary human myotubes incubated with plasma from NSCLC patients with low physical performance had impaired oxygen consumption rate (-54.2%; p < .0001) and cell proliferation (-44.9%; p = .007). An unbiased metabolomic analysis revealed a list of specific metabolites differentially expressed in the plasma of NSCLC patients with low physical performance.
CONCLUSION: These novel findings indicate that physical performance is a prognostic factor for overall survival in NSCLC patients and provide novel insights into circulating factors that could impair skeletal muscle metabolism.
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.