Publications

2024

Xiao, Shuke, Veronica L Li, Xuchao Lyu, Xudong Chen, Wei Wei, Fahim Abbasi, Joshua W Knowles, et al. (2024) 2024. “Lac-Phe Mediates the Effects of Metformin on Food Intake and Body Weight.”. Nature Metabolism 6 (4): 659-69. https://doi.org/10.1038/s42255-024-00999-9.

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.

Li, Yijun, Xiumei Hong, Aruna Chandran, Corinne A Keet, Clary B Clish, Liming Liang, Lisa P Jacobson, Xiaobin Wang, and Christine Ladd-Acosta. (2024) 2024. “Associations Between Cord Blood Acetaminophen Biomarkers and Childhood Asthma With and Without Allergic Comorbidities.”. Annals of Allergy, Asthma & Immunology : Official Publication of the American College of Allergy, Asthma, & Immunology 132 (6): 705-712.e5. https://doi.org/10.1016/j.anai.2024.03.001.

BACKGROUND: Previous studies have linked prenatal acetaminophen use to increased asthma risk in children. However, none have explored this association while differentiating between asthma cases with and without other allergic conditions or by employing objective biomarkers to assess acetaminophen exposure.

OBJECTIVE: To evaluate whether the detection of acetaminophen biomarkers in cord blood is associated with the subgroups of asthma both with and without allergic comorbidities in children.

METHODS: Acetaminophen biomarkers, including unchanged acetaminophen and acetaminophen glucuronide, were measured in neonatal cord blood samples from the Boston Birth Cohort. Asthma subgroups were defined on the basis of physician diagnoses of asthma and other allergic conditions (atopic dermatitis and allergic rhinitis). Multinomial regressions were used to evaluate the associations between acetaminophen biomarkers and asthma subgroups, adjusting for multiple confounders, including potential indications for maternal acetaminophen use such as maternal fever.

RESULTS: The study included 142 children with asthma and at least 1 other allergic condition, 55 children with asthma but no other allergic condition, and 613 children free of asthma. Detection of acetaminophen in cord blood, reflecting maternal exposure to acetaminophen shortly before delivery, was associated with 3.73 times the odds of developing asthma without allergic comorbidities (95% CI: 1.79-7.80, P = .0004). In contrast, the detection of acetaminophen in cord blood was not associated with an elevated risk of asthma with allergic comorbidities. Analysis of acetaminophen glucuronide yielded consistent results.

CONCLUSION: In a prospective birth cohort, cord blood acetaminophen biomarkers were associated with an increased risk of childhood asthma without allergic comorbidities, but were not associated with childhood asthma with allergic comorbidities.

Moorthi, Ranjani N, Sharon M Moe, Thomas O’Connell, Stephanie Dickinson, Sahir Kalim, Ravi Thadhani, Clary B Clish, Tariq Shafi, Eugene P Rhee, and Keith G Avin. (2024) 2024. “Plasma Metabolites and Physical Function in Patients Undergoing Hemodialysis.”. Scientific Reports 14 (1): 8427. https://doi.org/10.1038/s41598-024-58522-9.

Impaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.

Lee, Jeong Hyun, Vishal M Gohil, Pedram Heidari, Jessica L Seidel, Mohammad Zulkifli, Ying Wei, Yuhua Ji, et al. (2024) 2024. “Mechanism of Action and Translational Potential of (S)-Meclizine in Preemptive Prophylaxis Against Stroke.”. Stroke 55 (5): 1370-80. https://doi.org/10.1161/STROKEAHA.123.044397.

BACKGROUND: Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer.

METHODS: We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations.

RESULTS: Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion.

CONCLUSIONS: Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.

Luo, Kai, Brandilyn A Peters, Jee-Young Moon, Xiaonan Xue, Zheng Wang, Mykhaylo Usyk, David B Hanna, et al. (2024) 2024. “Metabolic and Inflammatory Perturbation of Diabetes Associated Gut Dysbiosis in People Living With and Without HIV Infection.”. Genome Medicine 16 (1): 59. https://doi.org/10.1186/s13073-024-01336-1.

BACKGROUND: Gut dysbiosis has been linked with both HIV infection and diabetes, but its interplay with metabolic and inflammatory responses in diabetes, particularly in the context of HIV infection, remains unclear.

METHODS: We first conducted a cross-sectional association analysis to characterize the gut microbial, circulating metabolite, and immune/inflammatory protein features associated with diabetes in up to 493 women (  146 with prevalent diabetes with 69.9% HIV +) of the Women's Interagency HIV Study. Prospective analyses were then conducted to determine associations of identified metabolites with incident diabetes over 12 years of follow-up in 694 participants (391 women from WIHS and 303 men from the Multicenter AIDS Cohort Study; 166 incident cases were recorded) with and without HIV infection. Mediation analyses were conducted to explore whether gut bacteria-diabetes associations are explained by altered metabolites and proteins.

RESULTS: Seven gut bacterial genera were identified to be associated with diabetes (FDR-q <  0.1), with positive associations for Shigella, Escherichia, Megasphaera, and Lactobacillus, and inverse associations for Adlercreutzia, Ruminococcus, and Intestinibacter. Importantly, the associations of most species, especially Adlercreutzia and Ruminococcus, were largely independent of antidiabetic medications use. Meanwhile, 18 proteins and 76 metabolites, including 3 microbially derived metabolites (trimethylamine N-oxide, phenylacetylglutamine (PAGln), imidazolepropionic acid (IMP)), 50 lipids (e.g., diradylglycerols (DGs) and triradylglycerols (TGs)) and 23 non-lipid metabolites, were associated with diabetes (FDR-q <  0.1), with the majority showing positive associations and more than half of them (59/76) associated with incident diabetes. In mediation analyses, several proteins, especially interleukin-18 receptor 1 and osteoprotegerin, IMP and PAGln partially mediate the observed bacterial genera-diabetes associations, particularly for those of Adlercreutzia and Escherichia. Many diabetes-associated metabolites and proteins were altered in HIV, but no effect modification on their associations with diabetes was observed by HIV.

CONCLUSION: Among individuals with and without HIV, multiple gut bacterial genera, blood metabolites, and proinflammatory proteins were associated with diabetes. The observed mediated effects by metabolites and proteins in genera-diabetes associations highlighted the potential involvement of inflammatory and metabolic perturbations in the link between gut dysbiosis and diabetes in the context of HIV infection.

Ma, Wenjie, Yiqing Wang, Long H Nguyen, Raaj S Mehta, Jane Ha, Amrisha Bhosle, Lauren J Mclver, et al. (2024) 2024. “Gut Microbiome Composition and Metabolic Activity in Women With Diverticulitis.”. Nature Communications 15 (1): 3612. https://doi.org/10.1038/s41467-024-47859-4.

The etiopathogenesis of diverticulitis, among the most common gastrointestinal diagnoses, remains largely unknown. By leveraging stool collected within a large prospective cohort, we performed shotgun metagenomic sequencing and untargeted metabolomics profiling among 121 women diagnosed with diverticulitis requiring antibiotics or hospitalizations (cases), matched to 121 women without diverticulitis (controls) according to age and race. Overall microbial community structure and metabolomic profiles differed in diverticulitis cases compared to controls, including enrichment of pro-inflammatory Ruminococcus gnavus, 1,7-dimethyluric acid, and histidine-related metabolites, and depletion of butyrate-producing bacteria and anti-inflammatory ceramides. Through integrated multi-omic analysis, we detected covarying microbial and metabolic features, such as Bilophila wadsworthia and bile acids, specific to diverticulitis. Additionally, we observed that microbial composition modulated the protective association between a prudent fiber-rich diet and diverticulitis. Our findings offer insights into the perturbations in inflammation-related microbial and metabolic signatures associated with diverticulitis, supporting the potential of microbial-based diagnostics and therapeutic targets.

Group, MoTrPAC Study, John M Jakicic, Wendy M Kohrt, Joseph A Houmard, Michael E Miller, Shlomit Radom-Aizik, Blake B Rasmussen, et al. (2024) 2024. “Molecular Transducers of Physical Activity Consortium (MoTrPAC): Human Studies Design and Protocol.”. Journal of Applied Physiology (Bethesda, Md. : 1985) 137 (3): 473-93. https://doi.org/10.1152/japplphysiol.00102.2024.

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a preclinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 wk of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 wk. The adult component also includes recruitment of highly active endurance-trained or resistance-trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.NEW & NOTEWORTHY The Molecular Transducers of Physical Activity Consortium (MoTrPAC) will be the first large trial to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. By generating a compendium of the molecular responses to exercise, MoTrPAC will lay the foundation for a new era of biomedical research on Precision Exercise Medicine. Presented here is the design, protocols, and procedures for the MoTrPAC human studies.

McGee, Emma E, Oana A Zeleznik, Raji Balasubramanian, Jie Hu, Bernard A Rosner, Jean Wactawski-Wende, Clary B Clish, et al. (2024) 2024. “Differences in Metabolomic Profiles Between Black and White Women in the U.S.: Analyses from Two Prospective Cohorts.”. European Journal of Epidemiology 39 (6): 653-65. https://doi.org/10.1007/s10654-024-01111-x.

There is growing interest in incorporating metabolomics into public health practice. However, Black women are under-represented in many metabolomics studies. If metabolomic profiles differ between Black and White women, this under-representation may exacerbate existing Black-White health disparities. We therefore aimed to estimate metabolomic differences between Black and White women in the U.S. We leveraged data from two prospective cohorts: the Nurses' Health Study (NHS; n = 2077) and Women's Health Initiative (WHI; n = 2128). The WHI served as the replication cohort. Plasma metabolites (n = 334) were measured via liquid chromatography-tandem mass spectrometry. Observed metabolomic differences were estimated using linear regression and metabolite set enrichment analyses. Residual metabolomic differences in a hypothetical population in which the distributions of 14 risk factors were equalized across racial groups were estimated using inverse odds ratio weighting. In the NHS, Black-White differences were observed for most metabolites (75 metabolites with observed differences ≥ |0.50| standard deviations). Black women had lower average levels than White women for most metabolites (e.g., for N6, N6-dimethlylysine, mean Black-White difference = - 0.98 standard deviations; 95% CI: - 1.11, - 0.84). In metabolite set enrichment analyses, Black women had lower levels of triglycerides, phosphatidylcholines, lysophosphatidylethanolamines, phosphatidylethanolamines, and organoheterocyclic compounds, but higher levels of phosphatidylethanolamine plasmalogens, phosphatidylcholine plasmalogens, cholesteryl esters, and carnitines. In a hypothetical population in which distributions of 14 risk factors were equalized, Black-White metabolomic differences persisted. Most results replicated in the WHI (88% of 272 metabolites available for replication). Substantial differences in metabolomic profiles exist between Black and White women. Future studies should prioritize racial representation.

Murthy, Venkatesh L, Jonathan D Mosley, Andrew S Perry, David R Jacobs, Kahraman Tanriverdi, Shilin Zhao, Konrad T Sawicki, et al. (2024) 2024. “Metabolic Liability for Weight Gain in Early Adulthood.”. Cell Reports. Medicine 5 (5): 101548. https://doi.org/10.1016/j.xcrm.2024.101548.

While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.

Abbott, Keene L, Ahmed Ali, Bradley I Reinfeld, Amy Deik, Sonu Subudhi, Madelyn D Landis, Rachel A Hongo, et al. (2024) 2024. “Metabolite Profiling of Human Renal Cell Carcinoma Reveals Tissue-Origin Dominance in Nutrient Availability.”. ELife 13. https://doi.org/10.7554/eLife.95652.

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.